设为首页加入收藏联系我们
2009年7月22日 星期三
邮箱登录
用户名:
密 码:
  
产品分类
技术数据

热电偶技术

热电偶工作原理(热电偶原理)
       什么热电偶?这就要从热电偶测温原理说起,热电是一种感温元件, 它把温度信号转换成热电动势信号, 通过电气仪表转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。

 

热电偶和热电阻的区别
       热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同. 首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,通过温度变送器更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

 

防爆热电偶 
1、应用 
       通常和显示仪表、记录仪表、电子计算等配套使用。直接测量生产现场存在碳氢化合物等爆炸物的0°C~1300°C范围内液体、蒸汽和气体介质以及固体表面温度。
2、特点 
·多种防爆形式,防爆性能好; 
·压簧式感温元件,抗振性能好; 
·测温范围大; 
·机械强度高,耐压性能好; 
3、工作原理  
       防爆热电偶是利用间隙隔爆原理,设计具有足够强度的接线盒等部件,将所有会产生火花,电弧和危险温度的零部件都密封在接线盒腔内,当腔内发生爆炸时,能通过接合面间隙熄火和冷却,使爆炸后的火焰和温度传不到腔外,从而进行隔爆。 
4、主要技术参数 
 产品执行标准 
  IEC584
  IEC1515
  GB/T16839-1997
  JB/T5518-91
  GB3836
5、常温绝缘电阻  
       热电偶在环境温度为20±15°C,相对湿度不大于80%,试验电压为500±50V(直流)电极与外套管之间的绝缘电阻>1000Ω.m

 

由单一均质金属所形成之封闭回路,沿回路上每一点即使改变温度也不会有电流产生。 

亦即,E = 0。亦即,E = 0。 

在由2种类均质金属A与B所形成之热电偶回路,E为A与B的接合点之温度t 1与t 2相关之关系函数,不受A与B之中间温度t 3与t 4之影响。 

在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t 3若为相同的话,E不受C插入之影响。 

在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。 


如右图所示,对由A与B所形成之热电偶插入第3之中间金属C,形成由A与C、C与B之2组热电偶。 接合點溫度保持t 1與t 2的情況下,E AC + E CB = E AB 。接合点温度保持t 1与t 2的情况下,E AC + E CB = E AB 。 

如右图所示任意数的异种金属A、B、C‧‧‧G所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。 

如右图所示,A与B所形成之热电偶,两接合点之温度为t 1与t 2时之E为E 12 ,t 2与t 3时之E为E 13的话,E 12 + E 23 = E 13 。 此時,稱t 2為中間溫度。此时,称t 2为中间温度。 
  以中間溫度t 2選擇如0 ℃這樣的標準溫度,求得相對 0 ℃任意的溫度 t 1 、 t 2 、 t 3 ‧‧‧ t n 之熱電動勢,任意兩點間之熱電動勢便可以計算求得。以中间温度t 2选择如0 ℃这样的标准温度,求得相对 0 ℃任意的温度 t 1 、 t 2 、 t 3 ‧‧‧ t n 之热电动势,任意两点间之热电动势便可以计算求得。 

如右图所示,对于使用补偿导线之热电偶回路适用以上之观念。 A與B為熱電偶,C與D為A、B用之補償導線,M為數位電壓計,計算後可得下面關係式: A与B为热电偶,C与D为A、B用之补偿导线,M为数位电压计,计算后可得下面关系式: 
  E = E AB (t 1 )  - E AB (t 3 ) E = E AB (t 1 ) - E AB (t 3 ) 
  也就是說,M所測定之電位差是由t 1 、 t 3所決定,不受t 2之影響。也就是说,M所测定之电位差是由t 1 、 t 3所决定,不受t 2之影响。 

 

       从事温度计量工作的同志都知道,热电偶的工作原理——两种不同导体组成闭合回路,当它的两端温度相等时,其回路热电势为零。当热电偶工作端与自由端温度不相等时,闭合回路中产生热电势。热电势的大小与两端温度差有关。热电偶的自由端温度不是一个恒定值。厂家都采用热电偶专用线——补偿导线。将热电偶延长到一个恒定的温度处,补偿了热电偶的热电势,即E=eAB(t)+eDB(t0)。如图1所示。

       在日常检测过程中,有不少厂家电工对补偿导线的作用不了解,只知道补偿导线是热电偶与仪表连接的专用线。而不知道补偿导线有正负极之说,随意将补偿导线与热电偶和仪表连接,这是错误的,会引起很大的误差。就以我市某一机械加工厂为例,当时工件的工艺要求淬火920℃。操作者也按工艺要求定值,仪表指示正常。淬火后,工件出现纹状,使一炉工件报废。分析事故中,发现补偿导线接反了,校正后,炉内温度为973℃。当时热电偶自由端温度为45℃,室内温度为18℃。计算接反后造成温度误差为:
  EAB(t45,0℃)=1.817mV
  EAB(t18,0℃)=0.718mV
  ΔE=-2EAB(t45-,t18)=-2.198mV
  相当于-53.13℃。
  以上事例说明,热电偶补偿导线接反后,能引起相当大的温度误差。因而,勿将补偿导线接反。

 

 

热电偶测温的应用原理
热电偶是工业上最常用的温度检测元件之一。其优点是:
①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理
       将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成
   (1)热电偶的种类
       常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 
       我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
    (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:
① 组成热电偶的两个热电极的焊接必须牢固;
② 两个热电极彼此之间应很好地绝缘,以防短路;
③ 补偿导线与热电偶自由端的连接要方便可靠;
④ 保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿
       由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。
       在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

怎样进行热电偶线的好坏区分
       首先确定热电偶线的外观没有问题,是好是坏,得通过检测才能确定。 
       将待测热电偶线穿上热电偶专用的瓷套管,和标准铂铑热电偶一起放入管式电炉中,将热端插入管式电炉中的一个多孔的均热用的金属镍制成的圆柱体中。将各自的补偿导线的冷端放入由冰水混合物保持的零摄氏度的容器中。 
       将管式电炉保持在该热电偶的许用最高温度,并稳定保持这个范围。这时候用经过检测合格的惠司登电位差计,测出标准热电偶和待测热电偶产生的热电势差并记录。 
       根据记录的热电势差,查分度表查出各自对应的温度,如果待测热电偶超差,可以判定为不合格。 
       这种管式电炉,不是分析化学用的硅碳棒管式电炉。 

 

温标发展过程
       现在通用的国际单位制中温度以开尔文(K)表示,这个温度单位也是基本单位。严格说来,温度单位的选择实际上是一个温标问题。热学发展史中出现过华氏温标、列式温示、兰氏温标、摄氏温标、气体温标和热力学温标等。热力学温标是1848年开尔文首先提出的,由热力学温标定义的热力学温度具有最严格的科学意义。其余几种都属于经验温标,其共同特点是人为选择某一特定的温度计和若干温度固定点来定义温标,因此缺乏客观标准。这些经验温标已成为历史,但跟现代的温标仍有一些渊源关系。 
       华氏温标是德国人华伦海特(D.G.Fahrenheit)大约在1710年提出的,规定水的冰点为32度,水的沸点为212度。华氏温度至今还在英、美等国民间流行。 
       列氏温标由列奥缪尔(R.A.F.Reaumur)于1730年提出,规定水的冰点为零度,水的沸点为80度。列氏温标在德国曾一度流行。 
       兰氏温标由英国人兰金(Rankine)提出,其定义为 tR=tF+459.67 
       实际上兰氏温度是以绝对零度为计算起点的华氏温度,以0R表示之。现在科技界已很少采用。 
       摄氏温标是瑞典天文学家摄尔萨斯(A.Celsius)在1742年提出的。他原来的方案是以水的沸点为零度,水的冰点为100度。次年法国人克里斯丁(Christian)把两个标度倒过来,就成了现在通用的标度。 
       以气体温度计标定温度所构成的气体温标最接近热力学温标。由于气体温度计的复现性较差,国际间又协议定出国际实用温标,以统一国际间的温度量值,国际实用温标几经变革, 为此定出的温度尽可能接近热力学温度。 
       早在1887年,国际计量委员会就曾决定采用定容氢气体温度计作为国际实用温标的基础。 
       1927年第七届国际计量大会决议采用铂电阻温度计等作为温标的内插仪器,并规定在氧的凝固点(-182.97摄氏度)到金凝固点(1063摄氏度)之间确定一系列可重复的温度或固定点。 
       1948年第十一届国际计量大会对国际实用温标作了若干重要修订。例如,以金融点代替金凝固点;以普朗克黑体辐射定律代替维恩定律;引用更精确的常数值;计算公式更为精确;光测高温计的测量限值扩大等等。 
       1960年又增加了一条重要修订,即把水的三相点作为唯一的定义点,规定其绝对温度值为273.16(精确),以代替原来水冰点温度为0.00摄氏度(精确)之规定。而水的冰点根据实测,应为273.1500±0.0001K。采用水的三相点作为唯一的定义点是温度计量的一大进步,因为这可以避免世界各地因冰点变动而出现温度计量的差异。 
       1968年对国际实用温标又作了一次修订,代号为IPTS-68。其特点是采用了有关热力学的最新成就,使国际实用温标更接近热力学温标。这一次还规定以符号K表示绝对温度,取消原来的符号(K),并规定摄氏温度与热力学温标的绝对温度单位精确相等,摄氏温度t=绝对温度T-273.15(精确)。 
       1975年和1976年分别对IPTS-68作了修订和补充,把温度范围的下限由13.8K扩大到0.5K。 但还是出现不足之处,主要是在实验中不断发现IPTS-68在某些温区与国际单位制定义的热力学温度偏差甚大。 
       1988年国际度量衡委员会推荐,第十八届国际计量大会及第77届国际计量委员会作出决议,从1990年1月1日起开始在全世界范围内采用重新修订的国际温标,这一次取名为1990年国际温标,代号为ITS-90,取消了“实用”二字,因为随着科学技术水平的提高,这一温标已经相当接近于热力学温标。和IPTS-68相比较,100摄氏度时偏低0.026摄氏度,即标准状态下水的沸点已不再是100摄氏度,而是99.974摄氏度。 
       显然,ITS-90的实施会给精密温度计量带来好处,是科学技术发展的又一标志.